In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management

نویسندگان

  • Pierre Martre
  • Jianqiang He
  • Jacques Le Gouis
  • Mikhail A. Semenov
چکیده

Genetic improvement of grain yield (GY) and grain protein concentration (GPC) is impeded by large genotype×environment×management interactions and by compensatory effects between traits. Here global uncertainty and sensitivity analyses of the process-based wheat model SiriusQuality2 were conducted with the aim of identifying candidate traits to increase GY and GPC. Three contrasted European sites were selected and simulations were performed using long-term weather data and two nitrogen (N) treatments in order to quantify the effect of parameter uncertainty on GY and GPC under variable environments. The overall influence of all 75 plant parameters of SiriusQuality2 was first analysed using the Morris method. Forty-one influential parameters were identified and their individual (first-order) and total effects on the model outputs were investigated using the extended Fourier amplitude sensitivity test. The overall effect of the parameters was dominated by their interactions with other parameters. Under high N supply, a few influential parameters with respect to GY were identified (e.g. radiation use efficiency, potential duration of grain filling, and phyllochron). However, under low N, >10 parameters showed similar effects on GY and GPC. All parameters had opposite effects on GY and GPC, but leaf and stem N storage capacity appeared as good candidate traits to change the intercept of the negative relationship between GY and GPC. This study provides a system analysis of traits determining GY and GPC under variable environments and delivers valuable information to prioritize model development and experimental work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the efficiency of APSIM-Wheat model for simulation of phenology and grain yield of bread wheat (Triticum aestivum L.) in drylands of west and northwest of Iran

Crop simulation models are valuable tools for prediction of crop performance under various weather conditions and allow designing methods to limit the negative impacts of adverse environmental constraints. Agricultural Production Systems sIMulator (APSIM) is a comprehensive model that simulates the performance of a wide range of crops in response to climatic, soil and management factors. In thi...

متن کامل

Assessment of agro-physiological traits for salt tolerance in drought-tolerant wheat genotypes

Salt stress is one of the major constraints for wheat cultivation inIranand leads to a considerable loss in crop yield each year. In high salinity soils, the reduced osmotic potential of soil solutes may cause physiological drought. In this study the salt tolerance of different drought-tolerant bread wheat genotypes were studied by examining various agronomic and physiological traits, inclu...

متن کامل

Simulation Analysis of Physiological Traits to Improve Yield, Nitrogen Use Efficiency and Grain Protein Concentration in Wheat

The pressure of economic cost and environmental constraints dictates that farmers must optimize the use of nitrogen fertilizer. Industrial uses of new wheat varieties require specific and stable grain protein concentration, which needs accurate estimation of N demand during the crop cycle. Thus breeding for high N use efficiency (NUE) and yield, whilst maintaining high grain protein concentrati...

متن کامل

Effect of crop residue and nitrogen levels in yield and yield attributing traits of rice under Rice-Wheat Cropping System

A 3- years (2015, 2016 and 2017) field study was carried out at National Wheat Research Program, Bhirahawa, Rupandehi, Nepal to evaluate the influence of crop residues and nitrogen levels on rice. The experiment was conducted in split plot design with three replications. Main plots were two crop residue levels (with crop residues of 30 cm wheat stubble and without crop residues) and sub plots c...

متن کامل

The impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)

Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015